ASPECTOS DIDACTICOS DEL MONCAYO
RESPETO A LA NATURALEZA

J. JAVIER GOMEZ VELASCO*

* Catedrático de Ciencias Naturales del I.B. «Luis Buñuel», de Zaragoza
INTRODUCCION

Prácticamente desde que ha habido posibilidad de hacerlo, los colegios de Zaragoza y regiones colindantes han organizado excursiones y salidas al Moncayo. La función de estas salidas era doble: por un lado disfrutar de los aires y paisajes de la montaña y por otro, sacar partido a las posibilidades pedagógicas y didácticas del Moncayo: Geología, Flora, Fauna, Historia, Arte, etc.

En nuestro centro, I.B. «Luis Buñuel» de Zaragoza, el Seminario de C. Naturales venía organizando cada año varias excursiones al Moncayo, para los distintos cursos, siendo la de Botánica de 3º de BUP, la más interesante.

En este curso 1987-1988, hemos tenido acceso a una experiencia algo más duradera que una simple excursión de un día. Gracias a la colaboración del MEC, la DGA, y de otras Instituciones públicas, se concedió al I.B. «Luis Buñuel» una estancia en Veruela del 16 al 21 de Noviembre. Esta estancia estaba solicitada para alumnos de 1º de BUP en primavera. Sin embargo, al ser concedida en otoño, dado que en esta época no conocemos aún a los alumnos de 1º, y además no se ha visto el programa, decidimos, tras consulta con los monitores encargados de este «Aula en la Naturaleza», ir con alumnos de 3º de BUP. Creemos sinceramente que fue un acierto. Asistieron 47 alumnos y estuvimos con ellos los cuatro profesores del Seminario, alternándonos.

* Catedrático de Ciencias Naturales del I.B. «Luis Buñuel», de Zaragoza
OBJETIVOS

En cuanto supimos que se nos habían concedido la estancia en Veruela, nos pusimos manos a la obra, para preparar esos días de trabajo, con el fin de sacarle el máximo partido posible, desde el punto de vista pedagógico.

Nuestro análisis tomó como punto de partida a los alumnos: habitantes de la ciudad, con muy poco contacto con la Naturaleza y con menos inquietud aún sobre ella. Se trataba pues de que vivieran unos días en y para la Naturaleza, fuera de la ciudad y de sus preocupaciones normales. Ya este aspecto es de por sí importante para los jóvenes de una ciudad.

A partir de este descubrimiento de la Naturaleza del Moncayo, tan distinta de los páramos yermos que rodean Zaragoza, vendría la reflexión sobre las causas de ese cambio: causas geológicas, climatológicas, topográficas, etc.

Lo que pretendemos es motivar al alumno, para que luego en clase, a la hora de estudiar los temas teóricos, tengamos un punto de apoyo que se entronque en lo que han visto realmente en el campo.

Así pues, a partir de ese estudio sobre las condiciones de formación y de climatología del Moncayo y de la Cordillera Ibérica, en general, veremos, ya sobre el lugar, cómo, en el mismo Moncayo se pueden diferenciar perfectamente distintos ecosistemas, en función de la altura, de los suelos, de la orientación, de la pluviosidad, etc. Estudiaremos y tomaremos muestras para su análisis en clase de los distintos grupos de vegetación, y sus características.

En definitiva, hemos pasado del descubrimiento de la Naturaleza en general, a ensayar métodos de trabajo y de estudio.

Por otra parte, dado que en otoño ya la Naturaleza empieza a alejarse, no abundan las flores, y tampoco los animales se dejan ver, decidimos volver, aunque fuera sólo un día, en primavera, para estudiar los mismos recorridos con la riqueza de flores y colorido que le da esta estación.

Con estos presupuestos, como punto de partida, hacemos nuestra experiencia. Pasemos ahora a analizar más detenidamente el trabajo realizado.

DESARROLLO DEL TRABAJO

Aproximación al Moncayo

Partiendo de Zaragoza, preparamos la visita de las minas de sal de Remolinos. No es casual esa visita. Queremos relacionar esas minas de sal con la formación de la C. Ibérica, una de cuyas cumbres es el Moncayo, y con el Valle del Ebro.

Para ello, remontamos nuestra explicación a finales de la Era Secundaria
(Mesozoico), hace unos 70 millones de años. En esa época, la Península Ibérica no estaba aún formada. El posible mapa de entonces sería algo parecido a la Fig. 1: dos grandes bloques emergidos, el europeo y el macizo hiespérico o castellano. Entre ambos un profundo mar (geosinclinal), en cuyo fondo se han estado depositando durante todo el Mesozoico grandes cantidades de sedimentos, provinientes de la erosión de ambos macizos. (Fig. 2).

Al final de la Era Mesozoica y principios de la Terciaria, tienen lugar los movimientos Alpinos: Las fuerzas de la corteza profunda y de las placas tectónicas empujan los macizos Hiespérico y europeo el uno contra el otro, atrapando los sedimentos entre ambos. Estos estratos se van a plegar y romper bajo el efecto de la compresión, formando una doble cordillera. Al N, el Pirineo, y al S, la Ibérica (Fig. 3 y 4). Entre ambas orogenias va a quedar una depresión que permanecerá cubierta por el agua, formando un mar interior. Durante toda la Era Terciaria, las dos cordilleras continuaban elevándose paulatinamente a la vez que la erosión actúa sobre ellas. Los productos de esta erosión son transportados por los ríos y glaciares y se depositan en el fondo de ese mar interior, en estratos horizontales. Suelen ser estratos formados por arenas, margas y arcillas. Por otra parte, se produce levantamiento del conjunto y un clima seco, hacen que se vaya secando ese mar interior, dejando grandes lagos cerrados. Estos lagos al sacarse dan origen a salmueras y finalmente a grandes depósitos de sal: Sal común (Remolinos) yesos, sulfatos de sodio (Glauberita de Cerez o de Río Tirón en el alto Ebro), calizas etc.

Posteriormente, el Ebro y sus afluentes excavan su cauce sobre esos estratos horizontales, dando a Aragón su configuración actual (Fig. 5 y 6).

En el curso de la excursión haremos hincapié en la horizontalidad de los estratos que se pueden observar a lo largo de la cantera, para luego compararlos con los estratos inclinados y plegados que veremos en el Moncayo.

También interesa hacer notar, cómo en el centro del Valle dominan los estratos de yeso, sales y arcillas, mientras que, a medida que nos acercamos al Moncayo, vamos viendo sedimentos arenosos y al final conglomerados más gruesos: Puesto que los sedimentos provienen de la montaña, está claro que los más finos pueden ser transportados más lejos, hasta el centro de la cuenca, mientras los cantos y granos más gruesos se quedan más cerca de la Sierra que los origina. (Este análisis también puede hacerse, acercándose al Pirineo).

Veruela

Una vez instalados, consideramos conveniente ambientarnos con el entorno. El Monasterio de Veruela se encuentra sobre depósitos cuaternarios subsidiarios del valle del río Huecha. Este valle, esta flanqueado por terrenos mesozoicos que forman un suave anticlinal desventrado, dando un relieve invertido típico. (Fig. 7).

Dando un paseo, recogemos cantos rodados del campo y los analizamos: aparecen cantos de areniscas rojas, de calizas, cuarcitas, y esquistos pizarrosos. A partir de los %
Figura 1.
Final Mesozoico
Macizo europeo
Geosinclinal
Macizo Hespérico
A

Figura 2.
Final Mesozoico
Oceano (Geosinclinal)
Macizo Hespérico
Sedimentos Mesozoicos
Macizo europeo
B

Figura 3.
Movimientos Alpinos
M. Europeo
Pirineos
Mar interior
C. Ibérica
M. Hespérico

Figura 4.
C. Ibérica (Moncayo)
Pirineos
Mar interior
Sedimentos mesozoicos plegados y fallados por la orogenia Alpina
M. Hespérico
M. Europeo
estimados, podemos deducir el tipo de rocas y terrenos erosionados por el río. Dominan las areniscas y cuarcitas del Triásico que forma la cumbre del Moncayo, aunque también hay algunos provenientes del Jurásico constituidos por calizas y dolomías.

A diferencia de los cantos rodados del Ebro, aquí no encontramos ninguno formado por granito u otra roca plutónica, prueba de que en el Moncayo no llegan a aflorar los granitos de la corteza más profunda.

Un corte esquemático de la Geología del Moncayo podría ser el de la Fig. 8. Se aprecian los estratos muy resistentes del Triásico, que cabalgan sobre los estratos calizos de Mesozoico, los cuales a su vez cabalgan sobre el terciario del Valle del Ebro.

Para todas estas explicaciones, los alumnos deben tener clara la noción del tiempo y de las eras geológicas. Es conveniente que tengan una hoja policopiada con la escala de las Eras y Periodos geológicos.

Paseando por la finca del Monasterio, vamos viendo diversos árboles, sobre todo coníferas: cedros, abetos, pinos, cipreses, thuyas, e incluso algunas Sequoias, reconocibles por sus hojas escamadas y su corteza esponjosa.

Estudio de los niveles de vegetación en el Moncayo:

El encinar

Ocupa la parte más baja de las faldas del Moncayo. Está intercalado con zonas de cultivo y con zonas de monte bajo con una pobre vegetación de coscoja, enebros, sabinas, jaras, aliagas, etc.

Posiblemente, en épocas remotas, el encinar debió cubrir todas estas lindes del Somontano, de clima duro en invierno y seco en verano, y de suelos silíceo-calcíreos más bien pobres. Hoy día quedan solamente retazos de encinares (*Quercus rotundifolia*). Pero son raros los ejemplares en los que podamos ver su majestuoso porte árboreo, ya que las talas sucesivas a lo largo de la Historia, han impedido su crecimiento (sabido es que una encina necesita por encima de los cien años para formarse plenamente). Como complemento a este programa, se pueden visitar lo restos del poblado prerromano, que están entre Veruela y Trasmoz. En él hay abundantes restos y hornos de fundiciones de Hierro, que utilizaban madera de encina como combustible. Esta causa, unida a la necesidad de madera para la construcción y la calefacción han condicionado la tala de los encinares.

Hacemos dibujar y describir a los alumnos las características de la encina y luego nos dedicamos a ver que otras plantas se dan en este ambiente. Así vamos descubriendo:

--- La coscoja (*Quercus coccifera*), arbusto similar a la encina pero de hojas más pequeñas, con pinchos, y de un verde clarito brillante.

--- El enebro (*Juniperus oxycedrus*) arbusto de hojas puntiagudas con doble banda
clara y frutos aromáticos de los que se extraen los aromas de la ginebra (similitud de nombres).

— La sabina (*Juniperus phoenicea*), de porte similar al enebro pero de hojas con escamas y de color verde obscuro.

— El espino albar (*Crataegus monogyno*) con sus hojas partidas y sus frutos rojos comestibles y muy ricos en Vit. C (majuelas).

— El endrino (*Prunus spinosa*).

— El romero, el tomillo, y el espliego tapizan el suelo aromatizándolo.

Robledal

Si seguimos subiendo hacia el Moncayo, por la carretera que va desde Veruela a Agramonte, atravesaremos una zona valdía, cubierta por alíagas (*Genista scorpius*) y retamas. También se ven helechos (*Pteridium aquilinum*). En conjunto, un erial, fruto de las talas incontroladas o de algún incendio forestal.

También reconocemos los brezos (*Erica sp.*) y dos tipos de jaras: *Cistus albidus* de flor malva, y *Cistus laurifolius* de flor blanca. A partir de los 1.000 m. de altitud empezamos a ver robles del tipo rebollo (*Quercus Pyrenaica*), de poco porte, debido también a las talas sistemáticas. Estamos ya en un clima más húmedo que en el encinar. En efecto, en esta zona alta llueve más, pues la temperatura es inferior y las nubes se condensan con más facilidad.

En el sotobosque seguimos encontrando retamas, jaras, brezos y enebros. Entre los robles hay grandes espacios cubiertos por los pinos de repoblación (*Pinus sylvestris*). En las hondonadas de los arroyetes reconocemos chopos (*Populus nigra*), álamos (*P. alba*), abedules (*P. tremula*), arces, (*Arcer sp.*), y sauces (*salix sp.*).

El hayedo

El hayedo necesita aún más humedad y más frescor, por lo que no se encuentran hayas hasta los 1.300-1.400 m. de altura. El haya (*Fagus sylvatica*) es un árbol de hermoso porte, hoja caduca y sombra muy tupida, lo que origina un sotobosque muy pobre, debido a la falta de luz. Bajo las hayas, suele crecer el arándano (*Vaccinium myrtillus*), con su sabroso y delicado fruto, el serbal (*Sorbus sp.*). En otoño el colorido de las hojas con el trasluz del sol, crea ambientes realmente hermosos y evocadores.

El pino

Los últimos árboles que encontramos en la escalada son coníferas. Se trata del pino negro (*P. uncinata*), fruto de una lograda repoblación. El sotobosque esta cubierto de brezos, enebros, sabinas, y también frambuesos silvestres (*Rubus sp.*)
Cuando ya se aclaran los pinos a unos 1.800 m. de altura, no quedan ya más que matojos muy resistentes al viento, al frío e incluso a la sequía: fundamentalmente dos leguminosas.

— Una retama de vistosas flores (*Cytisus purgans*) y de porte muy sobrio comparada con las retamas vistas más abajo.

— Una mata espinosa, pegada al suelo, con aspecto de erizo de quien toma el nombre (*Erinaceea anthyllis*).

En cada uno de estos ecosistemas hemos hecho varias paradas y hemos pedido a los alumnos el estudio detenido de sus componentes. Dibujar su porte, las hojas, el fruto, y en su caso, las flores.

Un aspecto a explotar y que nosotros no hemos tocado por falta de tiempo y porque la época no ayudaba es el estudio de la fauna de cada ecosistema: insectos, aves, mamíferos, reptiles.

Sin embargo, en otoño hay una hermosa cosecha de setas y hongos de los que hicimos abundante recolección para su estudio en casa. Entre las especies encontradas destacaban los Boletus y algunas Amanitas (*A. Muscaria* y *A. Pantherina*) venenosas.

En general, en el campo no hemos hecho más que recoger datos, característicos y muestras. El trabajo mas serio de clasificación se ha hecho en clase. Somos conscientes de que el estudio de la flora se puede completar con las plantas herbáceas características de cada nivel. Este trabajo exigiría otra estancia en primavera que es cuando hay flores, necesarias para una buena clasificación.

Sin embargo con el trabajo de campo realizado, se ha logrado lo que se pretendía: motivar al alumno para un posterior estudio más serio en el aula, durante el curso.

Maqueta

Precisamente en la línea de lo que acabamos de comentar, a lo largo del curso, uno de los grupos de 3º ha confeccionado también una maqueta de la zona del Moncayo.

Se trata de una reproducción a escala 1:25.000 de la topografía de la zona del Moncayo, sobre la que se ha pintado en colores el mapa de vegetación.

La maqueta esta hecha a partir de las hojas del mapa topográfico nacional 1:25.000, 351-I, 319-II, 320-III y 352-IV. Es un trabajo laborioso y minucioso, realizado por grupos de cuatro alumnos. Cada grupo se ha encargado de una hoja.

Se comienza por calcar, a partir del mapa topográfico las curvas de nivel de 100 en 100 m. de desnivel desechando las demás. Posteriormente, se recalan sobre tablé de 4 mm. de espesor (para guardar bien la escala 1:25.000:4 mm. 100 m.). Viene entonces el minucioso trabajo de marquetería consistente en serrar el contorno de dichas curvas.
Seguidamente, una vez recortadas, se van pegando sobre el nivel de base de cada hoja, que por ser distinto ha necesitado ser rellenado para igualar.

Para suavizar el relieve, fabricamos pasta de «papier maché» con papel de periódico, cola, engrudo, y blanco España, y rellenamos las curvas de forma que el relieve sea siempre tangente a los bordes de los tablés recortados. De esta manera se «reconstruye» el verdadero relieve a escala.

Sobre la maqueta así lograda, hemos querido pintar el mapa de la vegetación. Para ello hemos necesitado buscar información, bibliografía, por lo que los mismos alumnos han acudido a las distintas instituciones, para lograrla: Icona, Departamento de Medio Ambiente de la DGA, Dip. Provincial, Instituto Agronómico del Mediterráneo, Aula Dei, etc.

Finalmente con toda la documentación bajo el brazo, intentamos hacer una síntesis, pues los distintos autores no están siempre de acuerdo. Además en casi todos los mapas tuvimos que hacer la transformación de la escala 1:50.000 en que venían a la 1:25.000 de nuestra maqueta, lo cual les supuso un excelente ejercicio.

Como dato curioso y también pedagógico, es constatar que la altura del Moncayo, vista a escala, parece ser menor que en la realidad. En realidad, cuando nosotros miramos hacia el Moncayo, abarcándolo entero, lo vemos siempre desde muy lejos, 20 ó 30 Km. Cuando miramos desde esa distancia, la altura del Moncayo la vemos entera, en la vertical, pero la distancia horizontal no la vemos («se comprime»); por eso parece tan alto. En la maqueta ocurre al revés. Realmente las elevaciones de las montañas son bien poca cosa comparadas con las distancias horizontales. La corteza de la tierra es prácticamente lisa.

Otros aspectos

En nuestra subida al Moncayo, aprovechamos también para ver otros aspectos geológicos.

— Una discordancia: (Fig. 9) Justo detrás del Santuario del Moncayo, se puede ver perfectamente el contacto discordante entre unos estratos finos y muy plegados de pizarras del Paleozoico (Ordovícico), y las gruesas capas de conglomerados de la base del Triásico (Bundtsandstein), que están encima y que forman esos farallones imponentes.

A partir de lo visto, conviene explicar, en clase ya, el origen y la evolución de este proceso y a partir de ahí completar la historia geológica del Moncayo, afectado también por las orogénesis y arrasamientos del Paleozoico.

— El circo glacial formado en la base justo del pico, con sus morrenas, formadas por inmensos bloques de rocas caóticamente dispersos.
Itinerario geológico: De Vozmediano a Los Fayos

Es un excelente paseo del que se pueden extraer variados matices didácticos, para alumnos de BUP.

En Vozmediano visitamos el nacimiento del río Queiles: se trata de una surgencia de tipo kárstico. Las aguas proceden de filtraciones en las calizas situadas en la zona suroeste del Moncayo. Las calizas son impermeables, pero suelen estar muy rotas y diaclasadas por ser rocas muy rígidas, por lo que el agua se cuela por las grietas. Gracias a la acidez que el agua adquiere al mezclarse con el CO₂ de la atmósfera, disuelve las calizas formando un complejo muy característico llamado kárstico, con grutas, dolinas, ríos subterráneos, etc. Evidentemente esta visita nos dará pie a explicar posteriormente en clase los pormenores químicos y físicos de estos procesos.

Seguidamente, visitamos el castillo. De paso, nos fijamos en los materiales de que está construido: calizas, areniscas y tobas calcáreas. Trataremos luego de encontrarlos en el campo.

Tomamos el camino que sigue el curso del Queiles y que va a los Fayos. Vamos viendo como el fondo del barranco está formado por rocas duras de tipo calizo margoso y areniscas de colores variados de oscuras a verdosas e incluso muy claras. Se trata de materiales cretáceos. Encima, sobre los montes, los materiales son amarillentos, de tipo arenoso y conglomerados. Son los estratos horizontales del terciario. En varios sitios se puede ver perfectamente el contacto entre ambas formaciones. En algunos barrancos subsidiarios se aprecia la formación de toba calcárea, lo que explica su presencia en el castillo.

En las rocas del Mesozoico se observan fallas y fracturas a veces grandes, rellenas con milonita de falla de colores grisáceos, a veces finas rellenas con cristalizaciones variadas. Entre los minerales que hemos podido reconocer hay calcita, cuarzo, sideritas y oligisto.

También hay que reseñar los distintos niveles de terrazas que el río ha ido depositando en el fondo del valle. Como éste es muy estrecho, se puede perfectamente observar la correspondencia a ambos lados del río. A partir de su observación estaremos en condiciones de explicar en clase cómo se forman dichas terrazas y su relación con los períodos glaciares. (Fig. 10).

Finalmente, antes de pasar al valle del río Val, atravesamos unas capas de estratos cretáceos formados por margas arenosas de color muy claro que contienen gran cantidad de piritas. Estas capas son típicas en toda la rama aragonesa de la Cordillera Ibérica, y forman parte de la facies Weald del cretáceo inferior: las podemos encontrar en Agreda, y sobre todo en La Rioja, donde aparecen enormes ejemplares cúbicos, piritoedros y drusas de los más hermosos del mundo.

Aquí aparecen cubos de pirita de tamaño apreciable (hasta 2 cm. de arista), pero, al ser la roca poco compacta en esta zona, y ser muy arenosa, se filtra el agua y oxida la superficie de los cubos, que aparecen por ello de un sucio color oscuro.

748
Pasando sobre las colinas que separan el valle de Queiles del Val, llegamos al valle de este último. El Val ha excavado profundos barrancos en los conglomerados terciarios, que forman unos imponentes farallones sobre los que los buitres han establecido su guarida. Estos riscos tienen análogo origen y significado geológico que los Mallos de Riglos, pero están situados al otro lado de la cuenca sedimentaria del Valle del Ebro.

CONCLUSIONES

Desde el punto de vista de la Didáctica de las Ciencias Naturales la zona del Moncayo tiene unas inmensas posibilidades para motivar a los alumnos, como hemos visto. El gran problema con el que nos encontramos los profesores a la hora de explicar nuestros temas, es que el alumno no se siente motivado en absoluto. A menudo «pasa» del asunto porque la visión teórica de todos estos aspectos que hemos visto en este trabajo, no despierta su interés, ya que son problemas ajenos a sus vivencias.

Hay que lograr pues introducir esos aspectos de la Naturaleza en sus vivencias, y para ello hay que salir al campo. Zaragoza no es una provincia que ande sobrada de lugares idóneos para esta finalidad. Nosotros creemos que el Moncayo sí lo es y que bajo estos puntos de vista, hay que favorecer su conocimiento con una base científica a la mayor cantidad de escolares posibles.

Como hemos visto, la mayor parte del trabajo se realiza en clase pero ya es otra cosa: el alumno estudia procesos cuyos resultados ha visto en la Naturaleza, y a menudo se crean así excelentes vocaciones de futuros naturalistas.

BIBLIOGRAFÍA

Hojas del mapa Geológico 1:50.000, del IGME
Hojas 351, Olvega
Hojas 352, Tabuenca
Hojas 319, Agreda
Hojas 320, Tarazona

Hojas del mapa de cultivos y aprovechamientos, 1:50.000, nº 351-352-319-320 editado por Ministerio de Agricultura.

749